Instability Issues at SNS Accumulator Ring

S.Y. Zhang AGS Department, BNL

Workshop on Instabilities of High Intensity Hadron Beams in Rings BNL, June 28 – July 1, 1999

SNS Storage Ring

Parameter		SNS	Unit
Beam Power	P	2	MW
Total Particle	N	2.08	10^{14}
Circumference	C	220	m
Kinetic Energy	$E_{\mathbf{k}}$	1.0	GeV
Repetition Rate		60	Hz
Bunch Length	t_B	550	ns
Injection Turns		1200	
RF Voltage, $h = 1/2$	V_{RF}	40/20	KV
Beam Momemtum Spread	$\Delta p/p$	0.7	%
Beam Current	I_0/I_p	40/80	A
Ave. Chamber Radius	b	10	cm
Uncontr. Beam Loss		0.02	%
Beam Loss Power /m		1.8	W/m

- High intensity: Space charge, Particle distribution,
- High power: Beam loss, Activation, SNS power is 13 times higher than ISIS, 26 times for PSR.
- Activation is limiting the PSR at $\sim 75~KW$.
- SNS will have impact on the growing interest of very high power hadron beams.
- Large aperture: Impedance issues, Fringe fields, Large beam size,
- High RF voltage: Large beam momentum spread, Tolerance to longitudinal space charge effect,
- Selected issues of impedance and instabilities.

PSR Activation

Figure 3. Late 1996 activation map.

Broad Band Impedance

	Z_ℓ/n	Z_T
Bellows	1.1	8.8
Vacuum ports	0.49	3.9
Valves	0.28	2.2
Steps	16.8	134.4
Collimator	1.04	8.3
Total	19.7	157.6
\mathbf{Unit}	$j\Omega$	$jK\Omega/m$

- Dominated by steps.
- Moderate tapering and shielding are proposed.
- Compare with $j14~\Omega$ for ISR, $j16~\Omega$ for SPS, and $j30~\Omega$ for AGS.
- Do we need further reduction of this impedance?
- Sharp resonances for large steps, around 1 GHz.

Narrow Band Impedance

- RF cavity high order modes, large steps, other cavities in the chamber.
- Consequences of the narrow band impedance for long bunches.

Extraction Kicker, Transverse

- 8 window frame magnet units, $\bar{\ell} = 40$ cm, $2\bar{b} = 14$ cm, all have height 2a = 11.5 cm.
- ullet Conventional calculation, with 200 Ω charging resistance,

$$Z_T = \frac{c\omega\mu_0^2\ell^2}{4a^2Z_k}\Omega/m$$

• $Z_{T,\text{real}} \approx 20 \ K\Omega/m$ at 30 MHz.

Extraction Kicker, Transverse

- More realistic termination with 50 pf capacitance around the stray inductance of 0.5 μH .
- This gives rise to $Z_{T,\text{real}} \approx 100 \ K\Omega/m$ at 20 MHz, and $Z_{T,\text{real}} \approx 200 \ K\Omega/m$ at 50 MHz.

Extraction Kicker, Transverse

- Sensitivity to the termination.
- Example, just change the charging resistance as 2, 20, 200, 2000 Ω .
- Similar design for AGS and Booster. No special care was needed. Why?

Extraction Kicker, Longitudinal

- Taking $\delta_{copper} = 1$ mm, the total leakage inductance is $L_{leak} \approx 6 \ \mu H$, which is equivalent to $Z_{\ell}/n = j45 \ \Omega$.
- Present design of single power supply allows little image current on the conductors.
- Longitudinal space charge impedance is $Z_{\ell}/n = -j196 \Omega$. The leakage may offset this impedance.
- Longitudinal impedance compensation using ferrite ring, at PSR, KEK PS, also proposed for proton driver at FNAL.

Extraction Kicker, Longitudinal

- Differential flux leakage through the gap air will couple the terminations, Voelker and Lambertson, 1989.
- Example. Let the gap air leakage be the half of L_{leak} , real part of impedance takes place around 60 MHz.
- Extraction Kicker: impedance and engineering issues for window frame, C frame, travelling wave, and stripline type of kickers.

Longitudinal Microwave Instability

- The Keil-Schnell criterion is satisfied if the beam $\Delta p/p \ge 0.65\%$. Below transition, the threshold is even higher.
- With RF voltage of 40 KV, the beam has $\Delta p/p = \pm 0.7\%$. By ramping the RF voltage from 20 KV to 40 KV at the end of stacking, we have $\Delta p/p = \pm 0.65\%$.
- ISIS experience showed that K-S criterion might be overestimated.
- To improve the beam momentum distribution in the ring, Linac beam $\Delta p/p = \pm 0.3\%$ is proposed. Beam loss might be a problem.
- The effect of beam momentum distribution.

Resistive Wall Instability

- The calculated growth rate is 1 ms at the end of stacking.
- Calculated AGS resistive wall instability growth rate is $0.37 \ ms$, observed is $2 \ ms$.
- Calculated Booster growth rate is 0.48 ms, but never observed the instability. Probably fast ramping helps to further damp the instability.
- Use of stainless steel for vacuum chamber is acceptable.

Transverse Microwave Instability

- LHC and RHIC have ~ 1 ns bunch, $W_{bh} \approx 2$ GHz. The bunch length of SNS is 550 ns, giving rise to $W_{bh} \approx 3.6$ MHz.
- The transverse mode crossing may happen, but not the mode coupling.
- Entire beam life takes about a synchrotron period, conventional head-tail type instability will not be a serious problem.
- Chromatic effect is complicated during the multiturn injection.
- Transverse microwave instability may develop at a part of the beam, relevant to local peak current, associated impedance, and local coherent tune shift.

Transverse Microwave Instability

- The damping due to the beam momentum spread is weak at the low frequency.
- For SNS, $\eta = -0.193$, $\Delta p/p = \pm 0.7\%$, the Schottky band overlaps at n = 370, i.e. 440 MHz.

Schottky Band,

5. T. Zhang and W.T. Weng, 1993

Transverse Microwave Instability, Coherent Tune

• Coherent tune shift is from the image effect and BB impedance,

$$\Delta\nu_{coh,wall} = \frac{-NRr_0}{2\pi\nu_0 B_f \beta^2 \gamma^3 b^2}$$

$$\Delta\nu_{coh,BB} = \frac{j\beta e I_{peak}}{4\pi R m_0 \gamma \omega_\beta \omega_0} Z_{T,BB}$$

• At low energy, the coherent tune shift, is much larger than the combined tune spread of ξ , η , and synchrotron tune.

	AGS	PSR	Booster	ISIS	
N	6	3	2	4	10 ¹³
B_f	0.3	0.4	0.4	1	
E_{k}	1.55	0.8	0.2	0.07	GeV
ξ	-0.2	-0.2	-0.2	-1.4	
dp/p	0.4	0.34	0.7	0.2	%
Δu_{wall}	1.77	0.77	5.63	10.9	%
Δu_{BB}	1.95	0.35	0.74	0.73	%
Δu_{coh}	3.84	1.12(1.5)	6.37	11.6 (10)	%
$ \xi \nu_0 \Delta p/p$	0.71	0.14	0.69	1.09	%
$\eta \Delta p/p$	0.05	0.06	0.45	0.16	%
Δu_S	0.27	0.04	0.3	0	%
Δu_{inc}	1.03	0.24	1.44	1.25	%

Transverse Microwave Instability, AGS

- AGS experience
 - 1. At low energy, below transition, beam is stable.
 - 2. Beam could be unstable in transverse at high energy. VHF dilution $\sim 200~ms$ above transition, at $\sim 18~GeV$.
- Possible damping effect of space charge incoherent tune spread, which diminished at high energy.

Transverse Microwave Instability, SC Effect

- Conventional work assumed uniform distribution, which generates incoherent tune shift, but little spread.
- Gaussian distribution yields large spread, which is also betatron amplitude dependent.
- In general, both image and BB coherent tune shifts go with the same direction of the incoherent tune shift.

Transverse Microwave Instability, SC Effect

- Complications.
 - 1. Analytical approach is difficult, because of the distribution in the tune diagram.
 - 2. Image coherent tune shift may go other way for non-circular chamber.
 - 3. BB impedance coherent tune shift may go other way for some chamber geometry, D'yachkov and Ruggiero, 1997.
 - 4. e-p type problem.
- Like other similar machines, conventional transverse microwave instability will not be a serious problem for the SNS.
- Space charge effect in transverse microwave instabilities.
- Transverse space charge impedance issues.

PSR Instability, Potential Well

• Potential well of SNS is about twice as high as PSR.

	PSR	SNS	SNS	
N	4	10.4	20.8	10^{13}
R	14.35	35.1	35.1	m
B_f	0.4	0.4	0.4	
b	5	10	10	cm
$a = \sqrt{2}\sigma$	1.2	2.4	2.4	cm
$V_{pot.}$	6	6.5	13	KV

- For e-p type instability, the space charge incoherent tune spread is not effective in damping.
 - 1. The electron induced proton beam coherent tune shift moves to other direction, out of the incoherent tune spread.
 - 2. If multipacting takes place, the neutralization factor could be large. At the SNS, $\eta_{neu} = 0.23$ could entirely offset the space charge effect, leading to zero tune spread (assume same distributions for e and p).

PSR Instability, $\Delta p/p$ Issue

- Numerous evidences showed that the beam $\Delta p/p$ is important in damping the e-p instability at PSR,
 - 1. Threshold is proportional to RF voltage V_{RF} . R. Macek: $N \propto n \ \Delta p/p \propto \sqrt{N} \sqrt{V_{RF}}$, therefore, $N \propto V_{RF}$. This is $N \propto (\Delta p/p)^2$.
 - 2. Instability improved by inserting ferrite rings, which cleared the gap, but also increased beam $\Delta p/p$.
 - 3. Coasting beam threshold increases with the larger Linac beam $\Delta p/p$.
 - 4. Chromatic effect is shown in the study, $\sim \Delta p/p$.
 - 5. Double RF study showed no change on the threshold. The peak current is reduced, but the beam $\Delta p/p$ also reduced, two effects may offset.
 - 6. Increasing the bare tune by one unit improves the instability. It was explained by the effect of $\xi \nu_0 \Delta p/p$.

	PSR	SNS, 1MW	SNS, 2MW	
$\Delta p/p$	0.34	0.7	0.7	%
n	60	86	120	
η	-0.188	-0.193	-0.193	
$\Delta \nu = n\eta \Delta p/p$	3.8	11.6	16.2	%
$\Delta \nu / V_{pot.}$	0.63	1.78	1.25	

PSR Instability, Clean Gap

- Another important issue is the clean bunch gap
 - 1. 40 KV RF voltage at the SNS sufficiently suppresses the longitudinal space charge induced voltage of ~ 15 KV.
 - 2. A gap cleaning kicker is proposed.
 - 3. The effect of longitudinal impedance of the extraction kickers.

PSR Instability, Electron Production

• Booster study. Crashing $3 \times 10^9~Au^{+31}$ particles into the injection septum, 8 KV voltage drop was observed. Translated equivalent SNS proton SE production rate was about 27.

Booster Injection Septum Voltage with Au³¹⁺ Beam Scraping, Different Angles.

PSR Instability, Electron Production

- Tandem study. P. Thieberger et. al. have shown the scraping effect of $\sin \theta^{-1.2}$.
- Multipacting, theory and experiment, M. Blaskiewicz.

Tandem Study

Scraping Effect in SE Production, with

H⁺, 0⁸⁺, and Au³¹⁺ ions, Normalized.

